Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional Amyloid Protection in the Eye Lens: Retention of α-Crystallin Molecular Chaperone Activity after Modification into Amyloid Fibrils.

Identifieur interne : 001385 ( Main/Exploration ); précédent : 001384; suivant : 001386

Functional Amyloid Protection in the Eye Lens: Retention of α-Crystallin Molecular Chaperone Activity after Modification into Amyloid Fibrils.

Auteurs : Megan Garvey [Australie] ; Heath Ecroyd [Australie] ; Nicholas J. Ray [Australie] ; Juliet A. Gerrard [Nouvelle-Zélande] ; John A. Carver [Australie]

Source :

RBID : pubmed:28895938

Descripteurs français

English descriptors

Abstract

Amyloid fibril formation occurs from a wide range of peptides and proteins and is typically associated with a loss of protein function and/or a gain of toxic function, as the native structure of the protein undergoes major alteration to form a cross β-sheet array. It is now well recognised that some amyloid fibrils have a biological function, which has led to increased interest in the potential that these so-called functional amyloids may either retain the function of the native protein, or gain function upon adopting a fibrillar structure. Herein, we investigate the molecular chaperone ability of α-crystallin, the predominant eye lens protein which is composed of two related subunits αA- and αB-crystallin, and its capacity to retain and even enhance its chaperone activity after forming aggregate structures under conditions of thermal and chemical stress. We demonstrate that both eye lens α-crystallin and αB-crystallin (which is also found extensively outside the lens) retain, to a significant degree, their molecular chaperone activity under conditions of structural change, including after formation into amyloid fibrils and amorphous aggregates. The results can be related directly to the effects of aging on the structure and chaperone function of α-crystallin in the eye lens, particularly its ability to prevent crystallin protein aggregation and hence lens opacification associated with cataract formation.

DOI: 10.3390/biom7030067
PubMed: 28895938
PubMed Central: PMC5618248


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional Amyloid Protection in the Eye Lens: Retention of α-Crystallin Molecular Chaperone Activity after Modification into Amyloid Fibrils.</title>
<author>
<name sortKey="Garvey, Megan" sort="Garvey, Megan" uniqKey="Garvey M" first="Megan" last="Garvey">Megan Garvey</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSL Limited, 45 Poplar Road, Parkville, VIC 3052, Australia. megan.garvey@csl.com.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSL Limited, 45 Poplar Road, Parkville, VIC 3052</wicri:regionArea>
<wicri:noRegion>VIC 3052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ecroyd, Heath" sort="Ecroyd, Heath" uniqKey="Ecroyd H" first="Heath" last="Ecroyd">Heath Ecroyd</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong NSW 2522, Australia. heathe@uow.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences and the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong NSW 2522</wicri:regionArea>
<wicri:noRegion>Wollongong NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ray, Nicholas J" sort="Ray, Nicholas J" uniqKey="Ray N" first="Nicholas J" last="Ray">Nicholas J. Ray</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Chemistry, The Australian National University, Acton ACT 2601, Australia. nicholas.ray@anu.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Chemistry, The Australian National University, Acton ACT 2601</wicri:regionArea>
<wicri:noRegion>Acton ACT 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gerrard, Juliet A" sort="Gerrard, Juliet A" uniqKey="Gerrard J" first="Juliet A" last="Gerrard">Juliet A. Gerrard</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Science and School of Chemical Science, University of Auckland, Auckland 1010, New Zealand. j.gerrard@auckland.ac.nz.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Science and School of Chemical Science, University of Auckland, Auckland 1010</wicri:regionArea>
<wicri:noRegion>Auckland 1010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carver, John A" sort="Carver, John A" uniqKey="Carver J" first="John A" last="Carver">John A. Carver</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Chemistry, The Australian National University, Acton ACT 2601, Australia. john.carver@anu.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Chemistry, The Australian National University, Acton ACT 2601</wicri:regionArea>
<wicri:noRegion>Acton ACT 2601</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28895938</idno>
<idno type="pmid">28895938</idno>
<idno type="doi">10.3390/biom7030067</idno>
<idno type="pmc">PMC5618248</idno>
<idno type="wicri:Area/Main/Corpus">001171</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001171</idno>
<idno type="wicri:Area/Main/Curation">001171</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001171</idno>
<idno type="wicri:Area/Main/Exploration">001171</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional Amyloid Protection in the Eye Lens: Retention of α-Crystallin Molecular Chaperone Activity after Modification into Amyloid Fibrils.</title>
<author>
<name sortKey="Garvey, Megan" sort="Garvey, Megan" uniqKey="Garvey M" first="Megan" last="Garvey">Megan Garvey</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSL Limited, 45 Poplar Road, Parkville, VIC 3052, Australia. megan.garvey@csl.com.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSL Limited, 45 Poplar Road, Parkville, VIC 3052</wicri:regionArea>
<wicri:noRegion>VIC 3052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ecroyd, Heath" sort="Ecroyd, Heath" uniqKey="Ecroyd H" first="Heath" last="Ecroyd">Heath Ecroyd</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences and the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong NSW 2522, Australia. heathe@uow.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biological Sciences and the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong NSW 2522</wicri:regionArea>
<wicri:noRegion>Wollongong NSW 2522</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ray, Nicholas J" sort="Ray, Nicholas J" uniqKey="Ray N" first="Nicholas J" last="Ray">Nicholas J. Ray</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Chemistry, The Australian National University, Acton ACT 2601, Australia. nicholas.ray@anu.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Chemistry, The Australian National University, Acton ACT 2601</wicri:regionArea>
<wicri:noRegion>Acton ACT 2601</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gerrard, Juliet A" sort="Gerrard, Juliet A" uniqKey="Gerrard J" first="Juliet A" last="Gerrard">Juliet A. Gerrard</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Science and School of Chemical Science, University of Auckland, Auckland 1010, New Zealand. j.gerrard@auckland.ac.nz.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Science and School of Chemical Science, University of Auckland, Auckland 1010</wicri:regionArea>
<wicri:noRegion>Auckland 1010</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carver, John A" sort="Carver, John A" uniqKey="Carver J" first="John A" last="Carver">John A. Carver</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Chemistry, The Australian National University, Acton ACT 2601, Australia. john.carver@anu.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Chemistry, The Australian National University, Acton ACT 2601</wicri:regionArea>
<wicri:noRegion>Acton ACT 2601</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biomolecules</title>
<idno type="eISSN">2218-273X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amyloid (chemistry)</term>
<term>Amyloid (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Cattle (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Lens, Crystalline (MeSH)</term>
<term>Molecular Chaperones (chemistry)</term>
<term>Molecular Chaperones (metabolism)</term>
<term>Protein Aggregates (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Folding (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Protein Unfolding (MeSH)</term>
<term>alpha-Crystallin A Chain (chemistry)</term>
<term>alpha-Crystallin A Chain (metabolism)</term>
<term>alpha-Crystallin B Chain (chemistry)</term>
<term>alpha-Crystallin B Chain (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agrégats de protéines (MeSH)</term>
<term>Amyloïde (composition chimique)</term>
<term>Amyloïde (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Bovins (MeSH)</term>
<term>Chaine A de la cristalline alpha (composition chimique)</term>
<term>Chaine A de la cristalline alpha (métabolisme)</term>
<term>Chaperons moléculaires (composition chimique)</term>
<term>Chaperons moléculaires (métabolisme)</term>
<term>Chaîne B de la cristalline alpha (composition chimique)</term>
<term>Chaîne B de la cristalline alpha (métabolisme)</term>
<term>Cristallin (MeSH)</term>
<term>Dépliement des protéines (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amyloid</term>
<term>Molecular Chaperones</term>
<term>alpha-Crystallin A Chain</term>
<term>alpha-Crystallin B Chain</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amyloid</term>
<term>Molecular Chaperones</term>
<term>alpha-Crystallin A Chain</term>
<term>alpha-Crystallin B Chain</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Amyloïde</term>
<term>Chaine A de la cristalline alpha</term>
<term>Chaperons moléculaires</term>
<term>Chaîne B de la cristalline alpha</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Amyloïde</term>
<term>Chaine A de la cristalline alpha</term>
<term>Chaperons moléculaires</term>
<term>Chaîne B de la cristalline alpha</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cattle</term>
<term>Humans</term>
<term>Lens, Crystalline</term>
<term>Protein Aggregates</term>
<term>Protein Binding</term>
<term>Protein Folding</term>
<term>Protein Structure, Tertiary</term>
<term>Protein Unfolding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Agrégats de protéines</term>
<term>Animaux</term>
<term>Bovins</term>
<term>Cristallin</term>
<term>Dépliement des protéines</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Pliage des protéines</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Amyloid fibril formation occurs from a wide range of peptides and proteins and is typically associated with a loss of protein function and/or a gain of toxic function, as the native structure of the protein undergoes major alteration to form a cross β-sheet array. It is now well recognised that some amyloid fibrils have a biological function, which has led to increased interest in the potential that these so-called functional amyloids may either retain the function of the native protein, or gain function upon adopting a fibrillar structure. Herein, we investigate the molecular chaperone ability of α-crystallin, the predominant eye lens protein which is composed of two related subunits αA- and αB-crystallin, and its capacity to retain and even enhance its chaperone activity after forming aggregate structures under conditions of thermal and chemical stress. We demonstrate that both eye lens α-crystallin and αB-crystallin (which is also found extensively outside the lens) retain, to a significant degree, their molecular chaperone activity under conditions of structural change, including after formation into amyloid fibrils and amorphous aggregates. The results can be related directly to the effects of aging on the structure and chaperone function of α-crystallin in the eye lens, particularly its ability to prevent crystallin protein aggregation and hence lens opacification associated with cataract formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28895938</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>02</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2218-273X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>09</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Biomolecules</Title>
<ISOAbbreviation>Biomolecules</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional Amyloid Protection in the Eye Lens: Retention of α-Crystallin Molecular Chaperone Activity after Modification into Amyloid Fibrils.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E67</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/biom7030067</ELocationID>
<Abstract>
<AbstractText>Amyloid fibril formation occurs from a wide range of peptides and proteins and is typically associated with a loss of protein function and/or a gain of toxic function, as the native structure of the protein undergoes major alteration to form a cross β-sheet array. It is now well recognised that some amyloid fibrils have a biological function, which has led to increased interest in the potential that these so-called functional amyloids may either retain the function of the native protein, or gain function upon adopting a fibrillar structure. Herein, we investigate the molecular chaperone ability of α-crystallin, the predominant eye lens protein which is composed of two related subunits αA- and αB-crystallin, and its capacity to retain and even enhance its chaperone activity after forming aggregate structures under conditions of thermal and chemical stress. We demonstrate that both eye lens α-crystallin and αB-crystallin (which is also found extensively outside the lens) retain, to a significant degree, their molecular chaperone activity under conditions of structural change, including after formation into amyloid fibrils and amorphous aggregates. The results can be related directly to the effects of aging on the structure and chaperone function of α-crystallin in the eye lens, particularly its ability to prevent crystallin protein aggregation and hence lens opacification associated with cataract formation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Garvey</LastName>
<ForeName>Megan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>CSL Limited, 45 Poplar Road, Parkville, VIC 3052, Australia. megan.garvey@csl.com.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ecroyd</LastName>
<ForeName>Heath</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences and the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong NSW 2522, Australia. heathe@uow.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ray</LastName>
<ForeName>Nicholas J</ForeName>
<Initials>NJ</Initials>
<AffiliationInfo>
<Affiliation>Research School of Chemistry, The Australian National University, Acton ACT 2601, Australia. nicholas.ray@anu.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gerrard</LastName>
<ForeName>Juliet A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Science and School of Chemical Science, University of Auckland, Auckland 1010, New Zealand. j.gerrard@auckland.ac.nz.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carver</LastName>
<ForeName>John A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Research School of Chemistry, The Australian National University, Acton ACT 2601, Australia. john.carver@anu.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Biomolecules</MedlineTA>
<NlmUniqueID>101596414</NlmUniqueID>
<ISSNLinking>2218-273X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000682">Amyloid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D066329">Protein Aggregates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D038202">alpha-Crystallin A Chain</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D038203">alpha-Crystallin B Chain</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000682" MajorTopicYN="N">Amyloid</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007908" MajorTopicYN="N">Lens, Crystalline</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066329" MajorTopicYN="N">Protein Aggregates</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058767" MajorTopicYN="N">Protein Unfolding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038202" MajorTopicYN="N">alpha-Crystallin A Chain</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038203" MajorTopicYN="N">alpha-Crystallin B Chain</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">amyloid fibril</Keyword>
<Keyword MajorTopicYN="Y">molecular chaperone</Keyword>
<Keyword MajorTopicYN="Y">protein aggregation</Keyword>
<Keyword MajorTopicYN="Y">protein unfolding</Keyword>
<Keyword MajorTopicYN="Y">small heat-shock protein</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28895938</ArticleId>
<ArticleId IdType="pii">biom7030067</ArticleId>
<ArticleId IdType="doi">10.3390/biom7030067</ArticleId>
<ArticleId IdType="pmc">PMC5618248</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1998;290:365-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9534176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jan;4(1):e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16300414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):167-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26415747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 18;426(6968):884-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14685248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Protein Chem. 2003 Apr;22(3):259-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12962326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1997 Jul 18;236(2):370-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9240443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Oct 1;225(1):1-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7925426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Macromol. 1998 May-Jun;22(3-4):197-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9650074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2010 Jan 1;18(1):222-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19931462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2008 Mar;275(5):935-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18218039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 10;280(23 ):21726-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 2004 Nov;86(3):407-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15302206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Mater. 2016 Aug;28(31):6546-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27165397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Jan;66(1):62-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18810322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Pept Protein Res. 1979 Apr;13(4):409-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">457334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Sep;1842(9):1830-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24973551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Jan 17;34(2):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7819243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 Apr 29;53(16):2615-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24697516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Rev. 2015 Dec;7(4):353-368</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28510099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2008;40(5):954-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18162431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2015 Nov;22(11):898-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26458046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Mar 7;45(9):3069-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2006 Mar 15;350(2):186-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16480679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2015 Feb;72(3):429-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25352169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein J. 2007 Aug;26(5):315-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 May 13;286(19):16533-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12947045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Essays Biochem. 2014;56:207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25131597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2004 Dec;79(6):817-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2011 Jun;95(6):376-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21225714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2004 Dec;79(6):781-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2017 Jul;22(4):601-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28364346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5468-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23513222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Apr;1764(4):677-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2015 Sep 14;589(19 Pt A):2533-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26226339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Dec 27;44(51):17027-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16363816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2005 Dec 15;392(Pt 3):573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16053447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2002 Jan;74(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11878813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Oct;12(10):842-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16205709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 2014 Jul;115(1):11-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24674783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Optom. 2004 Nov;87(6):356-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15575808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Jan;1860(1 Pt B):240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26341790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 May 6;1698(2):131-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 2012 Dec;99(3):226-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22450705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Feb 11;275(6):3767-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10660525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1995 Oct;61(4):413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8549682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Vis. 2005 Apr 01;11:249-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15827547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Pept Lett. 2006;13(3):287-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16515457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Feb 18;275(7):4565-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10671481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2006;75:333-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2008 Apr;29(11):1553-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18164758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2004 Jun;98(6):1103-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15149821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3413-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14615485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2007 Oct;6(10):3935-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17824632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2017 Jul;22(4):627-638</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28391594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Apr 28;298(2):261-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10764595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2010 Jun;90(6):643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20171212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 14;372(2):470-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Oct;267(19):5916-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Pept Lett. 2006;13(3):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16515449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Jan 1;401(1):129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 May 22;40(20):6036-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Sep 19;272(38):23559-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9295293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Feb 16;268(2):426-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10679221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1996 Dec;63(6):639-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9068371</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Nouvelle-Zélande</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Garvey, Megan" sort="Garvey, Megan" uniqKey="Garvey M" first="Megan" last="Garvey">Megan Garvey</name>
</noRegion>
<name sortKey="Carver, John A" sort="Carver, John A" uniqKey="Carver J" first="John A" last="Carver">John A. Carver</name>
<name sortKey="Ecroyd, Heath" sort="Ecroyd, Heath" uniqKey="Ecroyd H" first="Heath" last="Ecroyd">Heath Ecroyd</name>
<name sortKey="Ray, Nicholas J" sort="Ray, Nicholas J" uniqKey="Ray N" first="Nicholas J" last="Ray">Nicholas J. Ray</name>
</country>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Gerrard, Juliet A" sort="Gerrard, Juliet A" uniqKey="Gerrard J" first="Juliet A" last="Gerrard">Juliet A. Gerrard</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001385 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001385 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28895938
   |texte=   Functional Amyloid Protection in the Eye Lens: Retention of α-Crystallin Molecular Chaperone Activity after Modification into Amyloid Fibrils.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28895938" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020